§5.2 Derivatives of Logarithmic and
Trigonometric Functions
Proposition 5.4 (Derivative of inverse function):
Let $I \subset \mathbb{R}$ be a nontrivial Interval, $f: I \rightarrow \mathbb{R}$ a continuous, strictly monotonic increasing function and $g=f^{-1}: I \rightarrow \mathbb{R}$ the corresponding inverse function ( $I=f(I)$ ). If $f$ is differentiable at $x \in I$ and $f^{\prime}(x) \neq 0$, then $g$ is differentiable at $y:=f(x)$ and

$$
g^{\prime}(y)=\frac{1}{f^{\prime}(x)}=\frac{1}{f^{\prime}(g(y))}
$$

Proof:
Let $\left(y_{k}\right)_{k \in \mathbb{N}} \subset J \backslash\{y\}$ (so $y_{k} \neq y$ ) a sequence with $\lim _{k \rightarrow \infty} y_{k}=y$. Set $x_{k}:=g\left(y_{k}\right)$.
As $g$ is continuous (Prop. 4.6), we have

$$
\lim _{k \rightarrow \infty} x_{k}=x, \quad x_{k} \neq x \forall k \quad(g \text { is bijective })
$$

Thus we compute

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{g\left(y_{k}\right)-g(y)}{y_{k}-y}=\lim _{k \rightarrow \infty} \frac{x_{k}-x}{f\left(x_{k}\right)-f(x)} \\
& =\lim _{k \rightarrow \infty} \frac{1}{\frac{f\left(x_{k}\right)-f(x)}{x_{k}-x}}=\frac{1}{f^{\prime}(x)}
\end{aligned}
$$

Therefore $g^{\prime}(y)=\frac{1}{f^{\prime}(x)}=\frac{1}{f^{\prime}(g(y))}$

Example 5.6:
$\log : \mathbb{R}>0 \rightarrow \mathbb{R}$ is the inverse function to $\exp : \mathbb{R} \rightarrow \mathbb{R}$. Thus Prop. 5.4 gives:

$$
\log ^{\prime}(x)=\frac{1}{\exp ^{\prime}(\log (x))}=\frac{1}{\exp (\log x)}=\frac{1}{x}
$$

Remark 5.3:
We have the following expression for the number $e$ :

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Proof:
As $\log ^{\prime}(1)=1$, we have

$$
\lim _{n \rightarrow \infty} n \log \left(1+\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{\log \left(1+\frac{1}{n}\right)}{\frac{1}{n}}=1
$$

Now use

$$
\left(1+\frac{1}{n}\right)^{n}=\exp \left(n \log \left(1+\frac{1}{n}\right)\right)
$$

and therefore due to continuity of $\exp$ :

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\exp (1)=e
$$

In order to compute derivatives of $\sin$, cos and other trigonometric functions, we need to work with complex numbers briefly.
Recall (see Lecture 1):
A complex number $z \in \mathbb{C}$ can be written as:

$$
z=a+i b, \quad a, b \in \mathbb{R}
$$

and we have $i^{2}=-1$
Geometric representation:


Sum:

$$
\begin{aligned}
& (a+i b)+(c+i d) \\
& =a+c+i(b+d)
\end{aligned}
$$

product :

$$
\begin{aligned}
& (a+i b)(c+i d) \\
& =a c-b d+i(b c+a d)
\end{aligned}
$$

Absolute value: $|z|=\sqrt{a^{2}+b^{2}}=\sqrt{z \bar{z}}$ where $\bar{z}$ denotes the "complex conjugate" of $z: \bar{z}:=a-i b$
multiplication by is

$$
i(a+i b)=-b+i a
$$


$\Rightarrow$ We see that multiplication by $i$ amounts to rotation by $\frac{\pi}{2}$ degrees!
Now let's look at the following function:

$$
f(t)=e^{i t}
$$

We have $f(0)=e^{0}=1$ and

$$
|f(t)|^{2}=e^{i t} \overline{e^{i t}}=e^{i t} e^{-i t}=e^{0}=1
$$

Furthermore,

$$
\frac{d}{d t} f(t)=i e^{i t} \Rightarrow\left|\frac{d f}{d t}\right|=i(-i) e^{i t} e^{-i t}=1
$$

Pictorially, this gives vela


We can think of $f(t)$ as describing the motion of a particle on the plane:

- $|f(t)|=1 \Rightarrow$ the particle moves along the unit circle
- $\left|\frac{d f}{d t}\right|=1 \Rightarrow$ the particle traverses the full circle in a time

$$
\Delta t=2 \pi
$$

Altogether we see that $e^{i t}$ is a map from $[0,2 \pi)$ to the unit circle on $\mathbb{C}$.

Let us next look at an arbitrary point $P$ of the unit circle $\Rightarrow \exists x \in[0,2 \pi]$ with $P=e^{i x}$


This gives the famous "Euler formula":

$$
e^{i x}=\cos x+i \sin x
$$

Proposition 5.5:
For all $x \in \mathbb{R}$ we have:
i) $\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right), \quad \sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)$
ii) $\cos (-x)=\cos x, \quad \sin (-x)=-\sin x$
iii) $\cos ^{2} x+\sin ^{2} x=1$

Proof:
These follow directly from Euler's formula.

Proposition 5.6:
The functions $\cos : \mathbb{R} \rightarrow \mathbb{R}$ and $\sin : \mathbb{R} \rightarrow \mathbb{R}$ are continuous on all of $\mathbb{R}$.
Proof:
Let $a \in \mathbb{R}$ and $\left(x_{n}\right)_{n e \mathbb{N}}$ a sequence with $\lim _{n \rightarrow \infty} x_{n}=a$. Then we have $\lim _{n \rightarrow \infty} e^{i x_{n}}=e^{i a}$ and therefore

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \cos x_{n}=\lim _{n \rightarrow \infty} \operatorname{Re}\left(e^{i x_{n}}\right)=\operatorname{Re}\left(e^{i a}\right)=\cos a \\
& \lim _{n \rightarrow \infty} \sin x_{n}=\lim \operatorname{Im}\left(e^{i x_{n}}\right)=\operatorname{Im}\left(e^{i a}\right)=\sin a .
\end{aligned}
$$

$\Rightarrow \cos$ and $\sin$ are continuous in $a$.
Proposition 5.7 :
For all $x, y \in \mathbb{R}$ we have

$$
\begin{aligned}
& \cos (x+y)=\cos x \cos y-\sin x \sin y \\
& \sin (x+y)=\sin x \cos y+\cos x \sin y
\end{aligned}
$$

and in particular:

$$
\begin{aligned}
& \cos (2 x)=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1 \\
& \sin (2 x)=2 \sin x \cos x
\end{aligned}
$$

Proof:
Use $e^{i(x+y)}=e^{i x+i y}=e^{i x} e^{i y}$
$\Rightarrow$ Together with the Euler formula this gives:

$$
\begin{aligned}
& \cos (x+y)+i \sin (x+y)=(\cos x+i \sin x)(\cos y+i \sin y) \\
& =(\cos x \cos y-\sin x \sin y)+i(\sin x \cos y+\cos x \sin y)
\end{aligned}
$$

Now compare real and imaginary parts and the statement follows.

We are now ready for
Proposition 5.8 :

$$
\cos ^{\prime}(x)=-\sin x, \quad \sin ^{\prime}(x)=\cos x
$$

Proof:
We have that $\frac{d}{d x} e^{i x}=i e^{i x}$. Plugging this into the Euler formula, we get

$$
\frac{d}{d x}(\cos x+i \sin x)=i(\cos x+i \sin x)=-\sin x+i \cos x
$$

Comparing real and imaginary parts of both sides gives the statement.

